jacobian()#
- ParametricDiscreteModel.jacobian(parameter, state, input_=None)#
Sum the state Jacobian of each model operator.
This the derivative of the right-hand side of the model with respect to the state, i.e., the function
where the model is given by .- Parameters:
- parameter(p,) ndarray
Parameter value
.- state(r,) ndarray
State vector
.- input_(m,) ndarray or None
Input vector
.
- Returns:
- jac(r, r) ndarray
State Jacobian of the right-hand side of the model.
Notes
For repeated
jacobian()
calls with the same parameter value, useevaluate()
to first get the nonparametric model corresponding to the parameter value.# Instead of this... >>> jacs = [parametric_model.jacobian(parameter, q, input_) ... for q in list_of_states] # ...it is faster to do this. >>> model_at_parameter = parametric_model.evaluate(parameter) >>> jacs = [model_at_parameter.jacobian(q, input_) ... for q in list_of_states]