predict()#
- ParametricContinuousModel.predict(parameter, state0, t, input_func=None, **options)#
Solve the system of ordinary differential equations. This method wraps
scipy.integrate.solve_ivp().- Parameters:
- parameter(p,) ndarray
Parameter value \(\bfmu\).
- state0(r,) ndarray
Initial state vector.
- t(nt,) ndarray
Time domain over which to integrate the model.
- input_funccallable or (m, nt) ndarray
Input as a function of time (preferred) or the input values at the times
t. If given as an array, cubic spline interpolation on the known data points is used as needed.- options
Arguments for
scipy.integrate.solve_ivp(). Common options:method : str ODE solver for the model.
'RK45'(default): Explicit Runge–Kutta method of order 5(4).'RK23': Explicit Runge–Kutta method of order 3(2).'Radau': Implicit Runge–Kutta method of the Radau IIA family of order 5.'BDF': Implicit multi-step variable-order (1 to 5) method based on a backward differentiation formula for the derivative.'LSODA': Adams/BDF method with automatic stiffness detection and switching.
max_step : float Maximimum allowed integration step size.
- Returns:
- states(r, nt) ndarray
Computed solution to the system over the time domain
t.
Notes
For repeated
predict()calls with the same parameter value, useevaluate()to first get the nonparametric model corresponding to the parameter value.