ParametricDiscreteModel#
- class ParametricDiscreteModel(operators, solver=None)[source]#
Parametric discrete dynamical system model \(\qhat(\bfmu)_{j+1} = \Ophat(\qhat(\bfmu)_{j}, \u_{j}; \bfmu)\).
Here,
\(\qhat(\bfmu)_j\in\RR^{r}\) is the \(j\)-th iteration of the model state,
\(\u_j\in\RR^{m}\) is the (optional) corresponding input, and
\(\bfmu\in\RR^{p}\in\RR^{p}\) is the parameter vector.
The structure of \(\Ophat\) is specified through the
operators
attribute.- Parameters:
- operatorslist of
opinf.operators
objects Operators comprising the terms of the model.
- operatorslist of
Properties:- A_#
opinf.operators.LinearOperator
(orNone
).
- B_#
opinf.operators.InputOperator
(orNone
).
- G_#
opinf.operators.CubicOperator
(orNone
).
- H_#
opinf.operators.QuadraticOperator
(orNone
).
- N_#
opinf.operators.StateInputOperator
(orNone
).
- c_#
opinf.operators.ConstantOperator
(orNone
).
- input_dimension#
Dimension \(m\) of the input (zero if there are no inputs).
- operators#
Operators comprising the terms of the model.
- parameter_dimension#
Dimension \(p\) of a parameter vector \(\bfmu\).
- solver#
Solver for the least-squares regression, see
opinf.lstsq
.
- state_dimension#
Dimension \(r\) of the state.
Methods:Make a copy of the model.
Construct a nonparametric model by fixing the parameter value.
Learn the model operators from data.
Construct a reduced-order model by taking the (Petrov-)Galerkin projection of each model operator.
Sum the state Jacobian of each model operator.
Step forward the discrete dynamical system
niters
steps.Solve the Operator Inference regression using the data from the last
fit()
call, then extract the inferred operators.Evaluate the right-hand side of the model by applying each operator and summing the results.