InterpContinuousModel#
- class InterpContinuousModel(operators, solver=None, InterpolatorClass=None)[source]#
 Parametric system of ordinary differential equations \(\ddt\qhat(t; \bfmu) = \fhat(\qhat(t; \bfmu), \u(t); \bfmu)\) where the parametric dependence is handled by elementwise interpolation.
Here,
\(\qhat(t;\bfmu)\in\RR^{r}\) is the model state,
\(\u(t)\in\RR^{m}\) is the (optional) input, and
\(\bfmu\in\RR^{p}\in\RR^{p}\) is the parameter vector.
The structure of \(\fhat\) is specified through the
operatorsargument.- Parameters:
 - operatorslist of 
opinf.operatorsobjects Operators comprising the terms of the model. For this class, these must be interpolated parametric operators.
- InterpolatorClasstype or None
 Class for the elementwise interpolation. Must obey the syntax
>>> interpolator = InterpolatorClass(data_points, data_values) >>> interpolator_evaluation = interpolator(new_data_point)
This can be, e.g., a class from
scipy.interpolate. IfNone(default), usescipy.interpolate.CubicSplinefor one-dimensional parameters andscipy.interpolate.LinearNDInterpolatorotherwise.
- operatorslist of 
 
Properties:- A_#
 opinf.operators.LinearOperator(orNone).
- B_#
 opinf.operators.InputOperator(orNone).
- G_#
 opinf.operators.CubicOperator(orNone).
- H_#
 opinf.operators.QuadraticOperator(orNone).
- N_#
 opinf.operators.StateInputOperator(orNone).
- c_#
 opinf.operators.ConstantOperator(orNone).
- input_dimension#
 Dimension \(m\) of the input (zero if there are no inputs).
- operators#
 Operators comprising the terms of the model.
- parameter_dimension#
 Dimension \(p\) of a parameter vector \(\bfmu\).
- solver#
 Solver for the least-squares regression, see
opinf.lstsq.
- state_dimension#
 Dimension \(r\) of the state.
Methods:Make a copy of the model.
Construct a nonparametric model by fixing the parameter value.
Learn the model operators from data.
Construct a reduced-order model by taking the (Petrov-)Galerkin projection of each model operator.
Sum the state Jacobian of each model operator.
Load a serialized model from an HDF5 file, created previously from the
save()method.Solve the system of ordinary differential equations.
Evaluate the least-squares solver and process the results.
Evaluate the right-hand side of the model by applying each operator and summing the results.
Serialize the model, saving it in HDF5 format.
Set the interpolator for the operator entries.