predict()#
- InterpDiscreteModel.predict(parameter, state0, niters, inputs=None)#
Step forward the discrete dynamical system
niterssteps. Essentially, this amounts to the following.>>> states[:, 0] = state0 >>> states[:, 1] = model.rhs(parameter, states[:, 0], inputs[:, 0]) >>> states[:, 2] = model.rhs(parameter, states[:, 1], inputs[:, 1]) ... # Repeat `niters` times.
- Parameters:
- parameter(p,) ndarray
Parameter value \(\bfmu\).
- state0(r,) ndarray
Initial state.
- nitersint
Number of times to step the system forward.
- inputs(m, niters-1) ndarray or None
Inputs for the next
niters - 1time steps.
- Returns:
- states(r, niters) ndarray
Solution to the system, including the initial condition
state0.
Notes
For repeated
predict()calls with the same parameter value, useevaluate()to first get the nonparametric model corresponding to the parameter value.