svdval_decay()#
- svdval_decay(singular_values, threshold: float = 1e-08, plot: bool = True, right: int = None, ax: Axes = None, **kwargs)[source]#
Count the number of normalized singular values that are greater than a specified threshold.
- Parameters:
- singular_values(n,) ndarray
Singular values of a snapshot matrix, e.g.,
scipy.linalg.svdvals(states)
.- thresholdfloat or list[float]
Cutoff value(s) for the singular values.
- plotbool
If
True
, plot the singular values and the cutoff value(s) against the singular value index.- rightint or None
Maximum singular value index to plot (
plt.xlim(right=right)
).- axmatplotlib.Axes or None
Axes to plot the results on if
plot=True
. If not given, a new single-axes figure is created.- kwargsdict
Options to pass to
matplotlib.pyplot.semilogy()
.
- Returns:
- ranksint or list[int]
Number of singular values greater than the cutoff value(s).