predict()

predict()#

DiscreteModel.predict(state0, niters, inputs=None)[source]#

Step forward the discrete dynamical system niters steps. Essentially, this amounts to the following.

>>> states[:, 0] = state0
>>> states[:, 1] = model.rhs(states[:, 0], inputs[:, 0])
>>> states[:, 2] = model.rhs(states[:, 1], inputs[:, 1])
...                                     # Repeat `niters` times.
Parameters:
state0(r,) ndarray

Initial state.

nitersint

Number of times to step the system forward.

inputs(m, niters-1) ndarray or None

Inputs for the next niters - 1 time steps.

Returns:
states(r, niters) ndarray

Solution to the system, including the initial condition state0.