mask()#

InterpDerivativeEstimator.mask(arr)[source]#

Map an array from the training time domain to the domain of the estimated time derivatives.

This method is used in post-hoc regularization selection routines.

Parameters:
arr(…, k) ndarray

Array (states, inputs, etc.) aligned with the training time domain.

Returns:
_arr(…, k) ndarray

Array mapped to the domain of the estimated time derivatives.

Notes

If new_time_domain is not the same as time_domain, this method interpolates the arr and evaluates the interpolant (not its derivative) over the new_time_domain.

Examples

>>> Q, dQ = estimator.esimate(states)
>>> Q2 = estimator.mask(states)
>>> np.all(Q2 == Q)
True
>>> Q3 = estimator.mask(other_states_on_same_time_grid)
>>> Q3.shape == Q.shape
True