mask()#
- NonuniformFiniteDifferencer.mask(arr)[source]#
Map an array from the training time domain to the domain of the estimated time derivatives. Since this class provides an estimate at every time step, this method simply returns
arr
.This method is used in post-hoc regularization selection routines.
- Parameters:
- arr(…, k) ndarray
Array (states, inputs, etc.) aligned with the training time domain.
- Returns:
- _arr(…, k’) ndarray
Array mapped to the domain of the estimated time derivatives.
Examples
>>> Q, dQ = estimator.esimate(states) >>> Q2 = estimator.mask(states) >>> np.all(Q2 == Q) True >>> Q3 = estimator.mask(other_states_on_same_time_grid) >>> Q3.shape == Q.shape True