ParametricOperatorTemplate#
- class ParametricOperatorTemplate[source]#
Template for operators that depend on external parameters, \(\Ophat_{\ell}(\qhat,\u;\bfmu).\)
In this package, a parametric “operator” is a function \(\Ophat_{\ell}: \RR^r \times \RR^m \times \RR^p \to \RR^r\) that acts on a state vector \(\qhat\in\RR^r\), an (optional) input vector \(\u\in\RR^m\), and a parameter vector \(\bfmu\in\RR^p\).
Parametric models are defined as the sum of several operators, at least one of which is parametric. For example, a system of ODEs:
\[\ddt\qhat(t;\bfmu) = \sum_{\ell=1}^{n_\textrm{terms}}\Ophat_{\ell}(\qhat(t),\u(t);\bfmu).\]Notes
This class can be used for custom nonparametric model terms that are not learnable with Operator Inference. For nonparametric model terms, see
OperatorTemplate. For model terms that can be learned with Operator Inference, seeOpInfOperatororParametricOpInfOperator.Properties:- parameter_dimension#
Dimension \(p\) of the parameter vector \(\bfmu\) that the operator matrix depends on.
- state_dimension#
Dimension \(r\) of the state \(\qhat\) that the operator acts on.
Methods:Apply the operator to the given state and input at the specified parameter value, \(\Ophat_\ell(\qhat,\u;\bfmu)\).
Return a copy of the operator.
Evaluate the operator at the given parameter value, resulting in a nonparametric operator.
Get the (Petrov-)Galerkin projection of this operator.
Construct the state Jacobian of the operator, \(\ddqhat\Ophat_\ell(\qhat,\u;\bfmu)\).
Load an operator from an HDF5 file.
Save the operator to an HDF5 file.
Verify dimension attributes and
evaluate().