ParametricOperatorTemplate#
- class ParametricOperatorTemplate[source]#
Template for operators that depend on external parameters, \(\Ophat_{\ell}(\qhat,\u;\bfmu).\)
In this package, a parametric “operator” is a function \(\Ophat_{\ell}: \RR^r \times \RR^m \times \RR^p \to \RR^r\) that acts on a state vector \(\qhat\in\RR^r\), an (optional) input vector \(\u\in\RR^m\), and a parameter vector \(\bfmu\in\RR^p\).
Parametric models are defined as the sum of several operators, at least one of which is parametric. For example, a system of ODEs:
\[\ddt\qhat(t;\bfmu) = \sum_{\ell=1}^{n_\textrm{terms}}\Ophat_{\ell}(\qhat(t),\u(t);\bfmu).\]Notes
This class can be used for custom nonparametric model terms that are not learnable with Operator Inference. For nonparametric model terms, see
OperatorTemplate
. For model terms that can be learned with Operator Inference, seeOpInfOperator
orParametricOpInfOperator
.Properties:- parameter_dimension#
Dimension \(p\) of the parameter vector \(\bfmu\) that the operator matrix depends on.
- state_dimension#
Dimension \(r\) of the state \(\qhat\) that the operator acts on.
Methods:Apply the operator to the given state and input at the specified parameter value, \(\Ophat_\ell(\qhat,\u;\bfmu)\).
Return a copy of the operator.
Evaluate the operator at the given parameter value, resulting in a nonparametric operator.
Get the (Petrov-)Galerkin projection of this operator.
Construct the state Jacobian of the operator, \(\ddqhat\Ophat_\ell(\qhat,\u;\bfmu)\).
Load an operator from an HDF5 file.
Save the operator to an HDF5 file.
Verify dimension attributes and
evaluate()
.